MAC 1105 Formulas

Slope of a line	$m = \frac{y_2-y_1}{x_2-x_1}$
Slope-intercept form	$y = mx + b$
Point-slope form	$y - y_1 = m(x - x_1)$ or $y = m(x-x_1) + y_1$
Slope of parallel lines	$m_1 = m_2$
Slope of perpendicular lines	$m_2 = \frac{-1}{m_1}$ or opposite reciprocal
Special lines	$y = b$; horizontal line, $x = a$; vertical line
Quadratic formula	Given $ax^2 + bx + c = 0$; $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Vertex	$(x-h)^2 + (y-k)^2 = r^2$, (h,k) is the center, r is the radius
Distance	$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
Midpoint	$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$
x-intercept	Let $y = 0$; $(a, 0)$
y-intercept	Let $x = 0$; $(0, b)$

Translation rules

$y = f(x + a)$	a units to the left
$y = f(x - a)$	a units to the right
$y = f(x) + a$	a units up
$y = f(x) - a$	a units down
$y = -f(x)$	Reflected over the x axis
$y = f(-x)$	Reflected over the y axis
Is $f(x) = f(-x)$	Symmetric to the y axis
Is $f(x) = -f(x)$	Symmetric to the x axis
Is $f(x) = -f(-x)$	Symmetric to the origin

Logarithm rules

| $\log_a mn = \log_a m + \log_a n$ |
| $\log_a \frac{m}{n} = \log_a m - \log_a n$ |
| $\log_a m^p = p \log_a m$ |
| $\log_a a^x = x$ |
| $\log_a m = \frac{\log m}{\log a} = \frac{\ln m}{\ln a}$ |
| $\ln e^x = x$ and $e^{\ln x} = x$ |
| $\log_a a^x = x$ and $a^{\log_a x} = x$ |
| If $a^x = a^y; a \neq 0$, then $x = y$ |
| $\log_a m = \log_a n; m, n > 0$, then $m = n$ |
| $\log_a a = 1$ and $\ln e = 1$ |

Exponent Rules

$m^a m^b = m^{a+b}$	$(a^m)^b = a^{mb}$		
$m^a / m^b = m^{a-b}$	$m^{-a} = 1 / m^a$		
$m^0 = 1$	$\sqrt[n]{m^a} = m^{a/n}$		
n even, $\sqrt[n]{a^n} =	a	$	n odd, $\sqrt[n]{a^n} = a$
$i = \sqrt{-1}$	$i^2 = -1$		
$\sqrt{-m} = i\sqrt{m}$			