Tests for Convergence of Series

Test for Divergence

If \(\lim_{n \to \infty} a_n \neq 0 \) or fails to exist, then \(\sum_{n=1}^{\infty} a_n \) diverges.

Geometric Series

For \(\sum_{n=1}^{\infty} ar^{n-1} \), the series converges for \(|r| < 1\), \(s = \frac{a}{1-r} \).

- Diverges for \(|r| \geq 1\).

p Series

For \(\sum_{n=1}^{\infty} \frac{1}{n^p} \), the series converges for \(p > 1 \).

- Diverges for \(p \leq 1 \).

Ratio Test

If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \),

- i. The series is Absolutely convergent if \(L < 1 \) and therefore is convergent.
- ii. The series diverges if \(L > 1 \) or is infinite.
- iii. The test is inconclusive if \(L = 1 \).

Root Test

If \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = L \),

- The series is Absolutely convergent if \(L < 1 \) and therefore is convergent.
- The series diverges if \(L > 1 \) or is infinite.
- The test is inconclusive if \(L = 1 \).

Absolute Convergence

If \(\sum_{n=1}^{\infty} |a_n| \) converges, then \(\sum_{n=1}^{\infty} a_n \) converges absolutely and is convergent.

Integral Test

Suppose \(f \) is a continuous, positive, decreasing function on \([1, \infty)\) and let \(a_n = f(n) \).

- i) If \(\int_{1}^{\infty} f(x) \, dx \) is convergent, then \(\sum_{n=1}^{\infty} a_n \) is convergent.
- ii) If \(\int_{1}^{\infty} f(x) \, dx \) is divergent, then \(\sum_{n=1}^{\infty} a_n \) is divergent.

The Limit Comparison Test

Suppose \(\sum a_n \) and \(\sum b_n \) are series with positive terms.

- If \(\lim_{n \to \infty} \frac{a_n}{b_n} = c \), where \(c \) is a finite number and \(c > 0 \) then both series converge or both series diverge.

The Comparison Test

Suppose \(\sum a_n \) and \(\sum b_n \) are series with positive terms.

- i) If \(\sum b_n \) is convergent and \(a_n \leq b_n \) for all \(n \), then \(\sum a_n \) is also convergent.
- ii) If \(\sum b_n \) is divergent and \(a_n \geq b_n \) for all \(n \), then \(\sum a_n \) is also divergent.

Alternating Series Test

If the alternating series \(\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots \) \(b_n > 0 \) satisfies

- i) \(b_{n+1} \leq b_n \quad \forall n \)
- ii) \(\lim_{n \to \infty} b_n = 0 \) then the series is convergent.