FINDING X- AND Y- INTERCEPTS

The x-intercept is the point at which a graph crosses the x-axis. As the y value is zero anywhere along the x-axis, the x-intercept is an ordered pair of numbers where the y value is always zero. The points $(-3, 0), (1, 0), (4, 0)$ are all examples of points on the x-axis.

The y-intercept is the point at which a graph crosses the y-axis. As the x value is zero anywhere along the y-axis, the y-intercept is an ordered pair of numbers where the x value is always zero. The points $(0, 1), (0, -1), (0, 2)$ are all examples of points on the y-axis.

It is possible to graph the equation of a line by finding the x- and y-intercepts.
EXAMPLE: We will graph the equation $3x + 2y = 12$ by finding the x- and y-intercepts.

1. To find the x-intercept, let $y = 0$ and solve for x.
 \[
 \begin{align*}
 3x + 2y &= 12 \\
 3x + 2(0) &= 12 \\
 3x &= 12 \\
 x &= 4
 \end{align*}
 \]

 The x-intercept is the ordered pair $(4, 0)$.

2. To find the y-intercept, let $x = 0$ and solve for y.
 \[
 \begin{align*}
 3x + 2y &= 12 \\
 3(0) + 2y &= 12 \\
 2y &= 12 \\
 y &= 6
 \end{align*}
 \]

 The y-intercept is the ordered pair $(0, 6)$.

3. Graph the ordered pairs and draw the line.

EXAMPLE: Find the x- and y-intercepts of $y = 2x + 6$ and graph.

1. Find the x-intercept. (y will be 0)
 \[
 \begin{align*}
 y &= 2x + 6 \\
 0 &= 2x + 6 \\
 -6 &= 2x \\
 -3 &= x
 \end{align*}
 \]

 The x-intercept is $(-3, 0)$.

2. Find the y-intercept. (x will be 0)
 \[
 \begin{align*}
 y &= 2x + 6 \\
 y &= 2(0) + 6 \\
 y &= 6
 \end{align*}
 \]

 The y-intercept is $(0, 6)$.

3. Graph the intercepts and draw the line.
EXAMPLE: Find the \(x\)- and \(y\)-intercepts of \(3x + 4y = 0 \) and graph.

1. Find the \(x\)-intercept (set \(y = 0 \))
 \[
 \begin{align*}
 3x + 4y &= 0 \\
 3x + 4(0) &= 0 \\
 3x &= 0 \\
 x &= 0
 \end{align*}
 \]
 The \(x\)-intercept is (0, 0).

2. Find the \(y\)-intercept (set \(x = 0 \))
 \[
 \begin{align*}
 3x + 4y &= 0 \\
 3(0) + 4y &= 0 \\
 4y &= 0 \\
 y &= 0
 \end{align*}
 \]
 The \(y\)-intercept is (0, 0).

NOTE that the \(x\)- and \(y\)-intercept are both at the point (0, 0). This means that the line goes through the origin. We will need to find another point in order to graph. Pick a value for \(x \) and solve for \(y \).

Let's see what happens if we let \(x = 4 \) after writing the equation in the \(y = mx + b \) form. (See handout #43)

Solve for \(y \):
 \[
 \begin{align*}
 3x + 4y &= 0 \\
 4y &= -3x + 0 \\
 \frac{4y}{4} &= -\frac{3x}{4} \\
 y &= -\frac{3}{4}x
 \end{align*}
 \]
 Now let \(x = 4 \):
 \[
 \begin{align*}
 y &= -\frac{3}{4}(4) \\
 y &= -3
 \end{align*}
 \]
 The point (4, -3) is a solution of \(3x + 4y = 0 \)

3. Graph the \(x\)- and \(y\)-intercept and the point (4, -3), and then draw the line.
EXERCISES: Find the x- and y-intercepts of the following equations and graph the line of each equation.

\begin{align*}
a. \quad y &= 2x + 8 \\
b. \quad y &= 5x + 10 \\
c. \quad x - 3y &= 6 \\
d. \quad 3x - 4y &= 12 \\
e. \quad 2x - 4y &= 8 \\
f. \quad 2x + 3y &= 0
\end{align*}

KEY:

a. x-intercept: $(-4, 0)$
 y-intercept: $(0, 8)$

b. x-intercept: $(-2, 0)$
 y-intercept: $(0, 10)$

c. x-intercept: $(6, 0)$
 y-intercept: $(0, -2)$

d. x-intercept: $(4, 0)$
 y-intercept: $(0, -3)$

e. x-intercept: $(4, 0)$
 y-intercept: $(0, -2)$

f. x-intercept: $(0, 0)$
 y-intercept: $(0, 0)$
 You will need another point to complete the graph.